
UNIT 2. SECOND ORDER SYSTEMS & STATE PLANE: Phase portrait of linear second systems. Method of isoclines, phase portrait of second order system with non-linearities, limit cycle, singular points.

UNIT 3. DESCRIBING FUNCTION ANALYSIS: Definition, limitations, use of describing function for stability analysis, describing function of ideal relay, relay with hysteresis & dead zone, saturation/coulomb friction & backlash.

UNIT 4. LINEAR APPROXIMATION OF NONLINEAR SYSTEMS: Taylor series, Liapunov’s 2nd method.

UNIT 5. SAMPLED DATA SYSTEMS: Sampling process, impulse modulation, mathematical analysis of sampling process, application of Laplace transform, Shannon’s theorem, reconstruction of sampled signal zero order & first order hold, Z-transform, definition, evaluation of Z-transform, Inverse Z-transform, pulse transfer function, limitations of Z-transform, state variable formulation of discrete time systems. Solution of discrete time state equations, stability, definition, the Schur-Cohn stability criterion, Jury’s test of stability of extension of Routh-Hurwitz criterion to discrete time systems.

TEXT BOOKS:
1. Digital Control & State Variable Methods : M.Gopal ; TMH.

REFERENCE BOOKS:
1. Modern Control Theory : M.Gopal ; Wiley International.
2. Discrete time control system : K.Ogate ; PHI
3. Digital Control Systems : B.C.Kuo
4. Applied non-linear control : J.E.Slotine & W.P.Li; Prentice Hall, USA,

NOTE: 8 questions are to be set –one from each unit. Students have to attempt five questions.

PART-C: COMPUTER CONTROL & AUTOMATION: Introduction to energy control centres, various states of a power system, SCADA Systems and RTU. Introduction to the MATLAB Power System block Set. Introduction of the features of EMTP.

TEXT BOOKS:

REFERENCE BOOKS:
2. Electrical Energy system theory: An introduction by O.I.Elgerd, TMH.
3. Elements of power system analysis: W. D. Stevenson, M.G.H.

NOTE: 8 questions are to be set –atleast 3 questions from Part -A & Part-B each and 2 questions from Part-C. Students have to attempt any five questions.
1. Draw the flow chart and develop the computer program for the formation of the Y Bus of a generalized network.
2. Draw the flow chart and develop the computer program for the formation of the Z Bus of a generalized network.
3. To plot the swing curve and observe the stability.
4. To perform load flow study using Gauss Shiedel method.
5. Perform short circuit study for any type of fault.
6. To observe transmission losses and efficiency with variations in power for the given example.
7. Design of distribution system
8. To study the features of EMTP
9. To study the MATLAB Power System block set features.

NOTE: At least 10 experiments have to be performed with at least 7 from above list, remaining 3 may either be performed from above list or designed & set by concerned institution as per the scope of syllabus.
DEPT. ELECTIVE – I
EE-432E EHV AC/DC
EE-434E Advanced Instrumentation
IC-404E Fuzzy Control System (IC, EL, EE)
EE-438E Recent Trends in De-regulated Power Systems
EE-466E Utilization of Electric Power & Traction

DEPT. ELECTIVE – II
EE-442E High Voltage Engineering
EE-444E Electrical Power Quality
EE-446E Artificial Intelligence
IC-405E Computer Based Instrumentation & Control
EE-450E Power Management
EE-432-E EXTRA HIGH VOLTAGE AC/ DC

Exam. : 100
Sessionals : 50
Total : 150
Duration of exam. : 3 hrs.

1. Break Down Mechanism of Gaseous Materials:
 Mechanism of Breakdown of gases, Townsend’s first ionization Co-efficient, Townsend’s second ionization Co-efficient, Townsend’s Breakdown Mechanism, Streamer Theory of Breakdown in gases, Paschen’s law.

2. Breakdown in Liquid and Solid Dielectrics:
 Suspended Particle Theory, Cavity Breakdown, Electro-convection Breakdown, Breakdown in solid Dielectrics, Intrinsic Breakdown, Electromechanical Breakdown, Breakdown due to Treeing and Tracking, Thermal Breakdown, Electrochemical Breakdown

3. Generation of High Voltage AC. and D.C
 Half wave and Full wave Rectifier, Cockcroft Walton Voltage Multiplier Circuit, Ripple in Multiplier Circuit, Electrostatic Vandegraft Generator, Generation of High Alternative Voltage, Cascade Transformer, Resonant Transformer, Generation of High Frequency A.C. High Voltage

4. Generation of Impulse Voltages and Currents:
 Standard Impulse Wave Shapes, Impulse Generator Circuit, Multistage Impulse Generator, Marx’s Circuit, Generation of Switching Surges, Impulse Current Generation, Tripping and Control of Impulse Generator

5. Measurement of High Voltage and Current:
 Sphere-Gap, Uniform field Spark gap, Rod Gap, Electrostatic Voltmeter, Generating Voltmeter, Impulse Voltage Measurement using Voltage divider, Measurement of high DC, AC and Impulse Current.

6. High Voltage Testing of Electrical Equipments:

7. Transients & Insulation Co-ordination in Power System:

Text Book:
1. High Voltage Engineering By M.S. Naidu & V. Kamaraju - TMH Publication

Reference Books:
EE-434-E ADVANCED INSTRUMENTATION

L T P
3 1 -

Exam. : 100
Sessionals : 50
Total : 150
Duration of exam. : 3 hrs.

2. REVIEW OF SENSORS AND TRANSDUCERS: Temperature, pressure, displacement, velocity, acceleration, strain and torque type.
4. NOISE: Characteristics & Measurements of signal in the presence of noise.
5. MICROCONTROLLER BASED INSTRUMENTATION SYSTEM: Interfacing of 8051 Microcontroller with (a) ADC and DAC, (b) Alphanumeric Devices (Sixteen-segment Display, Dot Matrix Displays, LCD Display).

REFERENCES:

1. E.O. Doeblin, Measurement System – Application & Design. TMH
UNIT 1 INTRODUCTION:
Fuzzy control from an industrial perspective, knowledge-based controllers, knowledge representation in KBC’s.

UNIT 2 THE MATHEMATICS OF FUZZY CONTROL:
Vagueness, fuzzy logic versus probability theory, fuzzy sets, their properties & operations on fuzzy sets, fuzzy relations & operations on fuzzy relations, the Extension Principle, Fuzzy propositions, The Compositional Rule of Inference, Different implications, Representing a set of rules.

UNIT 3 FKBC DESIGN PARAMETERS:
The PKBC architecture, choice of variables & content of rules, Derivation of rules, choice of membership functions, choice of scaling factors, choice of fuzzification procedure, choice of defuzzification procedure, comparison and evaluation of defuzzification methods.

UNIT 4 NONLINEAR FUZZY CONTROL:
The Control Problem, The FKBC as a Non-Linear Transfer Element, Types of FKBC such as PID-like FKBC, Sliding Mode FKBC, Sugeno FKBC.

UNIT 5 ADAPTIVE FUZZY CONTROL:
Design & Performance Evaluation, Approaches to Design such as membership function tuning using gradient descent, membership function tuning using performance criteria, the self-organizing controller, model based controller.

UNIT 6 STABILITY OF FUZZY CONTROL SYSTEMS:
The State space approach, Stability and robustness indices, input-output stability, circle criterion, the conicity criterion.

TEXT BOOK:
An Introduction to Fuzzy Control: D.,Driankov, H.Hellendoorn and M.Reinfrank.; Narosa.

REFERENCE BOOKS:
Fuzzy Control Systems : Abraham Kandel and Gideon Imngholz; Narosa

NOTE : Eight question are to be set at least one from each unit. Students have to attempt five questions in all.
EE-438-E RECENT TRENDS IN DEREGULATED POWER SYSTEMS

L T P
3 1 -

Exam. : 100
Sessionals : 50
Total : 150
Duration of exam. : 3 hrs.

1. **Deregulation of the Electricity Supply Industry:**
 Background of deregulation and the current situation, Benefits from a competitive Electricity Market, After effects of Deregulation.

2. **Power System Operation in Competitive Environment**
 Role of Independent System operator, Operational Planning activities of ISO, operational planning activities of Genco.

3. **Transmission open Access and Pricing Issues**

4. **Reliability and Deregulation**
 Reliability Analysis, Optimal Power Flow as a Basic Tool, Unit Commitment, Formation of Power Pools.

REFERENCES:

UNIT 1. ILLUMINATION:
Basic laws of illumination, light sources and their characteristics, sources of light, design of lighting schemes, incandescent lamp, sodium lamp, mercury lamp and fluorescent lamp, comparison of various lamps.

UNIT 2. ELECTRIC HEATING:
Principle and application of resistance, induction and dielectric heating.

UNIT 3. ELECTRIC WELDING:
Resistance welding, arc welding, welding generator and welding transformer, properties of arcing electrode.

UNIT 4. ELECTROLYTIC PROCESS:
Principles and applications of electrolysis. Faraday’s law of electrolysis, electroplating, charging and discharging. Capacity and efficiency of battery, defects in battery.

UNIT 5. ELECTRIC TRACTION:
Advantages of electric traction, requirements of an ideal traction system, train movement, mechanism of train movement, traction motors, traction motor control, multi unit control, braking of electric motors, thyristor control of electric traction.

REFERENCE BOOKS:
1. Utilization of Electrical Energy : Open Shaw Taylor ; ELBS

NOTE: 8 questions are to be set – at least one from each unit. Students have to attempt any five questions.

High Voltage Engineering

1. 1. Introduction: Recent trends in high voltage transmission.
2. 2. Conduction and breakdown: Conduction & breakdown in gases, liquids and solid dielectrics, insulator breakdown, insulation characteristics of long air gaps.
3. 3. Voltage gradients on conductors: Electrostatic fields of sphere gaps, fields of line charges and their properties, charge-potential relations for multi-conductor lines, surface voltage gradients on conductors, distribution of voltage gradient on sub conductors of bundle.;
4. 4. Corona: Corona and corona loss, corona loss formula, attenuation of travelling waves due to corona, audible noise-generation and characteristics, corona pulses--their generation and properties, properties of pulse, radio interference.
5. **Lightening:** Lightening phenomenon, lightning stroke mechanism, principle of lightning protection, tower foot resistance, insulator flash over and withstand voltage, lightning arresters and their characteristics.

6. **H.V. testing and Lab equipments:** Standard wave-shapes for testing, wave-shaping circuits: principles and theory; impulse generator, generation of ac high voltage for testing, generation of direct voltage, measurement of high voltage, general layout of H.V. Laboratory.

2. H.V. Engg.: V. Kamaraju and M.S. Naidu, T.M.H., N.Delhi.

Note: 8 questions are to be set – at least one from each unit. Students have to attempt any five questions.

EE-444-E ELECTRICAL POWER QUALITY

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Exam. : 100

Sessionals : 50

Total : 150

Duration of exam. : 3 hrs.

1. **INTRODUCTION TO ELECTRICAL POWER QUALITY:** Definition of Power Quality, Power Quality Issues, Power Quality v/s Equipment Immunity, Electric Power Quality Standards.

3. **ELECTRICAL TRANSIENTS:** Types and Causes of Transients, Atmospheric Causes, Switching Loads On or Off, Interruption of Fault Circuits, Capacitor Bank Switching, Motor Start Transient, Power Factor Correction, Capacitor Switching Transient.

REFERENCE BOOKS:

Artificial Intelligence

Course Code: EE-446-E
Course Title: Artificial Intelligence

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Exam.</th>
<th>Sessionals</th>
<th>Total</th>
<th>Duration of exam.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>3 hrs.</td>
</tr>
</tbody>
</table>

Unit-1: Foundational Issues in Artificial Intelligence
Foundation and history of AI, AI problems and techniques, AI programming languages, introduction to LISP and PROLOG, problem spaces and searches, blind search strategies, Breadth first- Depth first - heuristic search techniques, Hill climbing, best first - A* algorithm, AO* algorithm- game tree, Min max algorithms, game playing- alpha beta pruning.

Unit-2: Knowledge Representation
Issues, predicate logic, logic programming, semantic nets, frames and inheritance, constraint propagation, representing knowledge using rules, rules based deduction systems.

Unit-3: Approximate Reasoning
Reasoning under uncertainty, review of probability, Baye’s probabilistic inferences and Dempster Shafer theory, Heuristic methods, symbolic reasoning under uncertainty, Statistical reasoning, Fuzzy reasoning, Temporal reasoning, Non-monotonic reasoning.

Unit-4: Planning & Learning
Planning in situational calculus, Representation for planning, Partial order planning algorithm, Learning from examples, Discovery as learning, Learning by analogy, Explanation based learning, Introductory remarks on learning by Neural Networks and Genetic Algorithms.

Unit-5: Applications
Rule based systems architecture, Expert systems, Knowledge acquisition concepts, AI application to robotics, and current trends in intelligent systems.

Text Book:

Reference Books:

Note:
Eight questions will be set in all by the examiner taking at least one question from each unit. Students will be required to attempt five questions in all.
IC-405-E COMPUTER BASED INSTRUMENTATION AND CONTROL

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Theory</th>
<th>: 100 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>Class Work: 50 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total: 150 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duration of Exam: 3Hrs</td>
<td></td>
</tr>
</tbody>
</table>

UNIT 1. INTRODUCTION:
Necessity and functions of computers. Level of automation and economy of computer control. Centralized computer control Vs distributed computer control.

UNIT 2. COMPUTER ARCHITECTURE:
Micro and mini computer, functional models of I.O. system.

UNIT 3. INTERFACING:
Sampling; Multiplexing; A/D and D/A converters, interfacing with different types of transducers - Analog / Digital. Electrical and non electrical selection of sensors; Micro computer interfacing standard buses Serial buses; Serial data communication protocols.

UNIT 4. STRUCTURAL STUDY OF AUTOMATIC PROCESS CONTROL:
Fundamental of automatic process control, building block of automatic system, direct and distributed digital control system. Programmable controllers.

UNIT 5. PERSONAL COMPUTER IN REAL LIFE ENVIRONMENT:
Introduction, personal computer: system and facility, PC bus and signals, interrupts, interfacing PC with outer world, PC in RTE. Real time application of IBM PC PC based distributed control system.

UNIT 6. PROGRAMMING AND APPLICATION:
Modeling and simulation for plant automation, PLC Architecture and programming of PLC, industrial control application: cement plant, thermal power plant, water treatment plant, steel plant,

TEXT BOOK:
1. Computer based industrial control: Krishan Kant.; PHI

NOTE: Eight questions are to be set - at least one from each unit. Students have to attempt five questions.
EE-450-E POWER MANAGEMENT

L T P
3 1 -

Exam. : 100
Sessionals : 50
Total : 150
Duration of exam. : 3 hrs.

1. INTRODUCTION:
 Power Scenario, Power Development, Planning, Power resources, Environment- Power matters Plan, Pre-feasibility and feasibility studies, State relations for Power etc.

2. RESOURCES:
 Resources, Geophysical study, Seismic Considerations, Environmental Restraints, Resettlement and Rehabilitation.

3. PROCUREMENT:
 Contracting and Procurement, Consulting Services, Types of Contracts, Project Management, Organization and Economy Management, Organizational Planning and Time Scheduling, Project Cost Control.

4. ENGINEERING:
 Engineering & General Layout of Equipments, Generator, Transformer and Switch Gear and Control Equipment, Construction Methods, Operation and Maintenance Principle, Maintenance organization and planning, Availability, life cycle cost & future development. Visits to sites.

5. POWER SECTOR:
 Power sector structure in different states, Regulatory Regime in those states, Power utilities in Haryana, Grid management, Power financing, Visit to sites.

6. POWER STATION:
 Management of Fuel, water Resource Electricity deviend scenario storage and handling, Pricing, Contract etc., Human resource management. Visit to sites.

7. RISK & HAZARD:
 Introduction to risk, rules and regulation Aspects of Risk & Hazard Health & risk assessment visit to site.

8. ELECTRICITY INDUSTRY STRUCTURE & SAFETY REGULATIONS BILL & ETC.:
 State and Central Power boards / Power corporations.

Reference Books:

1. 1. Electricity Bill, Safety & Conservation Act
5. 5. P.C. Sharma, “Power Plant Engineering”, Dhanpat Rai Pub.,