HUM-202-E FUNDAMENTALS OF MANAGEMENT

L T P Class Work : 50 Marks
3 1 - Theory : 100 Marks
Total : 150 Marks
Duration of Exam. : 3 Hrs.

UNIT-I

UNIT-II

Nature and Significance of staffing, Personnel management, Functions of personnel management, Manpower planning, Process of manpower planning, Recruitment, Selection; Promotion - Seniority Vs. Merit. Training - objectives and types of training.

UNIT-III

Production Management : Definition, Objectives, Functions and Scope, Production Planning and Control; its significance, stages in production planning and control. Brief introduction to the concepts of material management, inventory control; its importance and various methods.

UNIT-IV

Marketing Management - Definition of marketing, Marketing concept, objectives & Functions of marketing. Marketing Research - Meaning; Definition; objectives; Importance; Limitations; Process. Advertising - meaning of advertising, objectives, functions, criticism.

UNIT-V

BOOKS RECOMMENDED :

TEXT BOOKS :
1. Principles and Practice of Management - R.S. Gupta, B.D.Sharma, N.S. Bhalla. (Kalyani Publishers)

REFERENCE BOOKS :
1. Principles & Practices of Management – L.M. Prasad (Sultan Chand & Sons)

NOTE: Eight questions are to be set atleast one question from each unit and the students will have to attempt five questions in all.
MATH-202-E NUMERICAL METHODS
------- -----------------
 (COMMON FOR EE,EL,CHE,EI,IC & ELECTIVE FOR CSE,IT IN 8th SEM.)

L T P Sessional : 50 Marks
3 1 - Exam. : 100 Marks
 Total : 150 Marks
 Duration of exam. : 3 Hours

Part-A

Interpolation and curve fitting : Interpolation problem, Lagrangian polynomials, Divided differences, Interpolating with a cubic spline, Bezier curves and B-spline curves, Least square approximations.

Non-Linear Equations : Bisection method, Linear Interpolation methods, Newton's method, Muller's method, fixed-point method.

Simultaneous Linear Equations : Elimination method, Gauss and Gauss-Jordan method, Jacobi's method, Gauss-Seidal method, Relaxation method.

Numerical Differentiation and Integration : Derivatives from differences tables, Higher order derivatives, Extrapolation techniques, Newton-cotes integration formula, Trapezoidal rule, Simpson's rules, Boole's rule and Weddle's rule, Romberg's Integration.

Part-B

Numerical Solution of Partial Differential Equations : Finite difference approximations of partial derivatives, solution of Laplace equation (Standard 5-point formula only), one-dimensional heat equation (Schmidt method, Crank-Nicolson method, Dufort and Frankel method) and wave equation.

TEXT BOOKS :

REFERENCE BOOKS :
2. Introductory Methods of Numerical Analysis S.S. Sastry, P.H.I.

Note: Examiner will set eight questions, taking four from Part-A and four from Part-B. Students will be required to attempt five questions taking atleast two from each part.
UNIT 1 SEMICONDUCTOR DIODE :
P-N junction and its V-I Characteristics, P-N junction as a rectifier, Switching characteristics of Diode.

UNIT 2 DIODE CIRCUITS :
Diode as a circuit element, the load-line concept, half-wave and full wave rectifiers, clipping circuits, clamping circuits, filter circuits, peak to peak detector and voltage multiplier circuits.

UNIT 3 TRANSISTOR AT LOW FREQUENCIES:
Bipolar junction transistor : operation, characteristics, Ebers-moll model of transistor, hybrid model, h-parameters (CE, CB, CC configurations), analysis of a transistor amplifier circuits using h-parameters, emitter follower, Miller's Theorem, frequency response of R-C coupled amplifier.

UNIT 4 TRANSISTOR BIASING :
Operating point, bias stability, collector to base bias, self-bias, emitter bias, bias compensation, thermistor & sensistor compensation.

UNIT 5 TRANSISTOR AT HIGH FREQUENCIES:
Hybrid P model, CE short circuit current gain, frequency response, alpha, cutoff frequency, gain bandwidth product, emitter follower at high frequencies.

UNIT 6 FIELD EFFECT TRANSISTORS :
Junction field effect transistor, pinch off voltage, volt-ampere characteristics, small signal model, MOSFET Enhancement & Depletion mode, V-MOSFET. Common source amplifier, source follower, biasing of FET, applications of FET as a voltage variable resistor (V VR).

UNIT 7 REGULATED POWER SUPPLIES :
Series and shunt voltage regulators, power supply parameters, three terminal IC regulators, SMPS.

TEXT BOOK :
1. Integrated Electronics: Millman & Halkias ; McGrawHill
2. Electronic circuit analysis and design (Second edition): D.A.Neamen; TMH

REFERENCE BOOKS:
1. Electronics Principles: Malvino ; McGrawHill
2. Electronics Circuits: Donald L. Schilling & Charles Belove ; McGrawHill

NOTE: Eight questions are to be set in all by the examiner taking at least one question from each unit. Students will be required to attempt five questions in all.
UNIT 1 FUNDAMENTALS OF DIGITAL TECHNIQUES:

UNIT 2 COMBINATIONAL DESIGN USING GATES:
Design using gates, Karnaugh map and Quine Mcluskey methods of simplification.

UNIT 3 COMBINATIONAL DESIGN USING MSI DEVICES
Multiplexers and Demultiplexers and their use as logic elements, Decoders, Adders / Subtractors, BCD arithmetic circuits, Encoders, Decoders / Drivers for display devices.

UNIT 4 SEQUENTIAL CIRCUITS:

UNIT 5 DIGITAL LOGIC FAMILIES:
Switching mode operation of p-n junction, bipolar and MOS devices. Bipolar logic families: RTL, DTL, DCTL, HTL, TTL, ECL, MOS, and CMOS logic families. Tristate logic, Interfacing of CMOS and TTL families.

UNIT 6 A/D AND D/A CONVERTERS:
Sample and hold circuit, weighted resistor and R-2R ladder D/A Converters, specifications for D/A converters. A/D converters : Quantization, parallel-comparator, successive approximation, counting type, dual-slope ADC, specifications of ADCs.

UNIT 7 PROGRAMMABLE LOGIC DEVICES:
ROM, PLA, PAL, FPGA and CPLDs.

TEXT BOOK :
1. Modern Digital Electronics(Edition III) : R. P. Jain; TMH

REFERENCE BOOKS :
1. Digital Integrated Electronics : Taub & Schilling; MGH
2. Digital Principles and Applications : Malvino & Leach; McGraw Hill.
3. Digital Design : Morris Mano; PHI.

NOTE : Eight questions are to be set in all by the examiner taking at least one question from each unit. Students will be required to attempt five questions in all.
UNIT 1. STATIC ELECTRIC FIELDS:
Coulomb’s Law, Gauss’s Law, potential function, field due to a continuous distribution of charge, equipotential surfaces, Gauss’s Theorem, Poisson’s equation, Laplace’s equation, method of electrical images, capacitance, electro-static energy, boundary conditions, the electro-static uniqueness theorem for field of a charge distribution, Dirac-Delta representation for a point charge and an infinitesimal dipole.

UNIT 2. STEADY MAGNETIC FIELDS:
Faraday Induction law, Ampere’s Work law in the differential vector form, Ampere’s law for a current element, magnetic field due to volume distribution of current and the Dirac-delta function, Ampere’s Force Law, magnetic vector potential, vector potential (Alternative derivation), far field of a current distribution, equation of continuity.

UNIT 3. TIME VARYING FIELDS:
Equation of continuity for time varying fields, inconsistency of Ampere’s law, Maxwell’s field equations and their interpretation, solution for free space conditions, electromagnetic waves in a homogeneous medium, propagation of uniform plane-wave, relation between E & H in a uniform plane-wave, wave equations for conducting medium, Maxwell’s equations using phasor notation, wave propagation in a conducting medium, conductors, dielectrics, wave propagation in good conductor and good dielectric, depth of penetration, polarization, linear, circular and elliptical.

UNIT 4. REFLECTION AND REFRACTION OF E M WAVES:
Reflection and refraction of plane waves at the surface of a perfect conductor & perfect dielectric (both normal incidence as well as oblique incidence), Brewster’s angle and total internal reflection, reflection at the surfaces of a conductive medium, surface impedance, transmission-line analogy, poynting theorem, interpretation of E x H, power loss in a plane conductor.

UNIT 5. TRANSMISSION LINE THEORY:
Transmission line as a distributed circuit, transmission line equation, travelling, standing waves, characteristic impedance, input impedance of terminated line, reflection coefficient, VSWR, Smith's chart and its applications.

TEXT BOOK:
1. Electro-magnetic Waves and Radiating System: Jordan & Balmain, PHI.

REFERENCE BOOKS:
1. Engineering Electromagnetics: Hayt, TMH

NOTE: 8 questions are to be set—atleast one from each unit. Students have to attempt any five questions.
UNIT 1. UNITS STANDARDS AND ERRORS:
S.I. units, Absolute standards (International, Primary, Secondary and Working Standards), True Value, Errors (Gross, Systematic and Random); Static Characteristic of Instruments (Accuracy, Precision, Sensitivity, Resolution and threshold).

UNIT 2. MEASURING SYSTEM FUNDAMENTALS:
Classification of Instruments (Based upon mode of measurement - Absolute and Secondary Instruments; Based upon Principle of Operation, Based upon function - Indicating, Recording and Integrating instruments), Generalized Instrument (Block diagram and description of various blocks), The three forces in an Electromechanical indicating instrument (Deflecting controlling and damping forces and the interplay between them), Comparison between gravity and spring controls; Comparison of methods of damping and their suitability for bearing supports, Pivot-less supports (Simple suspension and taut band suspension, scale, information, Instrument cases (Covers).

UNIT 3. MEASURING INSTRUMENTS:
Construction, Operating principle, Torque equation, Shape of scale, use as Ammeter or as Voltmeter (Extension of Range), Use on AC/DC or both, Advantages and disadvantages, Errors (Both on AC/DC) of PMMC types, Electrodynamic Type, Moving iron type (attraction, repulsion and combined attraction, repulsion types.) Hot wire type and Induction type, Electrostatic type Instruments.

UNIT 4. WATTMETERS & ENERGY METERS:
Construction Operating principle, Torque equation, Shape of scale, Errors, Advantages & Disadvantages of Electrodynamics and Induction type Wattmeters; and single phase induction type Energy meter, Compensation and creep in energy meter.

UNIT 5. POWER FACTOR & FREQUENCY METERS:
Construction, Operation, principle, Torque equation, Advantages & disadvantages of Single phase power factor meters (Electrodynamic and Moving Iron types) and Frequency meters (Electrical Resonance Type, Ferrodynamic and Electrodynamic types).

UNIT 6. LOW AND HIGH RESISTANCE MEASUREMENTS:
Limitations of wheatstone bridge, Kelvin's double bridge method, Difficulties in high resistance measurements, Measurement of high resistance by direct deflection, loss of charge method, Megohm bridge and Meggar.

UNIT 7. A.C. BRIDGES:
General balance Equation, Circuit diagram, Phasor diagram Advantages, Disadvantages and Applications of Maxwell's inductance, Maxwells Inducance-Capacitance bridge, Hays, Anderson, Owens, De-Sauty’s, Schering and Weins bridges, Shielding and earthing.

TEXT BOOK:
A Course in Electrical and Electronic Measurement & Instrumentation : A. K. Sawhney; dhanpat rai

REFERENCE BOOKS:
1. Electrical Measurements : E.W. Golding

NOTE : Eight questions are to be set taking atleast one question should be set from each unit. Five out of eight questions are to be attempted
LIST OF EXPERIMENTS:

1. Study of Half wave & full wave rectifiers.
2. Study of power supply filters.
3. Study of Diode as clipper & clamper.
4. Study of Zener diode as a voltage regulator.
5. Study of CE amplifier for voltage, current & Power gains and input, output impedances.
6. Study of CC amplifier as a buffer.
7. To study the frequency response of RC coupled amplifier.
8. Study of 3-terminal IC regulator.
9. Study of transistor as a constant current source in CE configuration.
10. Study of FET common source amplifier.
11. Study of FET common Drain amplifier.
12. Graphical determination of small signal hybrid parameters of bipolar junction transistor.
13. Study & design of a d.c. voltage doubler.

NOTE: At least ten experiments are to be performed, atleast seven experiments should be performed from above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.
LIST OF EXPERIMENTS:

1. Study of TTL gates – AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR.

2. Design & realize a given function using K-maps and verify its performance.

3. To verify the operation of multiplexer & Demultiplexer.

4. To verify the operation of comparator.

5. To verify the truth tables of S-R, J-K, T & D type flip flops.

6. To verify the operation of bi-directional shift register.

7. To design & verify the operation of 3-bit synchronous counter.

8. To design and verify the operation of synchronous UP/DOWN decade counter using J K flip-flops & drive a seven-segment display using the same.

9. To design and verify the operation of asynchronous UP/DOWN decade counter using J K flip-flops & drive a seven-segment display using the same.

10. To design & realize a sequence generator for a given sequence using J-K flip-flops.

11. Study of CMOS NAND & NOR gates and interfacing between TTL and CMOS gates.

12. Design a 4-bit shift-register and verify its operation. Verify the operation of a ring counter and a Johnson counter.

NOTE: At least ten experiments are to be performed, at least seven experiments should be performed from above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.
LIST OF EXPERIMENTS:

1. To identify the meters from the given lot.

2. To convert and calibrate a D' Arsonnal type galvanometer into a voltmeter and an ammeter.

3. To calibrate an energy meter with the help of a standard wattmeter and a stop watch.

4. To measure power and p.f by three ammeter method.

5. To measure power and p.f by three voltmeter method.

6. To measure power and p.f in three phase circuit by two wattmeter method.

7. To measure capacitance by De Sauty's bridge.

8. To measure inductance by maxwell's bridge.

9. To measure frequency by Wien's bridge.

10. To measure the power with the help of C.T and P.T.

11. To measure magnitude and phase angle of a voltage by rectangular type potentiometer.

12. To measure magnitude and phase angle of a voltage by polar type potentiometer.

13. To measure low resistance by Kelvin's double bridge.

14. To measure high resistance by loss of charge method.

NOTE : At least ten experiments are to performed, out of which at least seven experiments should be performed from above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.
WRITE DOWN AND EXECUTE THE FOLLOWING PROGRAMS USING C/C++/MATLAB

1. To find the roots of non-linear equation using Bisection method.
2. To find the roots of non-linear equation using Newton's method.
3. Curve fitting by least - square approximations.
4. To solve the system of linear equations using Gauss-Elimination method.
5. To solve the system of linear equations using Gauss-Seidal iteration method.
6. To solve the system of linear equations using Gauss-Jorden method.
7. To Integrate numerically using Trapezoidal rule.
8. To Integrate numerically using Simpson's rules.
9. To find the largest eigen value of a matrix by power-method.
10. To find numerical solution of ordinary differential equations by Euler's method.
11. To find numerical solution of ordinary differential equations by Runge-Kutta method.
12. To find numerical solution of ordinary differential equations by Milne's method.
13. To find the numerical solution of Laplace equation.
14. To find numerical solution of wave equation.
15. To find numerical solution of heat equation.

BOOKS SUGGESTED:
2. Numerical Methods : E. Balagurusamy T.M.H.

Note: Ten experiments are to be performed out of which at least seven experiments should be performed from above list. Remaining three experiments may either be performed from the above list or designed by the concerned institution as per the scope of the syllabus.